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We show for a large class of interacting particle systems that whenever the sta-
tionary measure is not reversible for the dynamics, then the mean entropy pro-
duction in the steady state is strictly positive. This extends to the thermodynamic
limit the equivalence between microscopic reversibility and zero mean entropy
production: time-reversal invariance cannot be spontaneously broken.
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(generalized) detailed balance.

1. INTRODUCTION

Reversibility and entropy are words with many meanings even within the
context of nonequilibrium statistical mechanics. One class of models that has
often been considered for learning about nonequilibrium behavior is that of
interacting particle systems. These are stochastic dynamics for spatially
extended systems in which particles locally interact. They are mostly toy-
models remaining far from realistic in their microscopic details. Yet, it is
believed that for some good purposes, the details do not matter so much and
one should be concerned more with the symmetries, possible conservation
laws, locality of the interaction etc. to hope to understand something about
real nature.

This paper is about the relation between time-reversal invariance and the
positivity of entropy production. We do this in the context of interacting
particle systems following the work in refs. 1–5. The physics background



will be discussed in Section 3. The main question is to understand why there
cannot exist a ‘‘superconducting’’ interacting particle system in the sense of
the title of this paper to be specified below. To understand the mathematical
problem, let us look first at a finite Markov chain. Suppose that K is a finite
set on which we have an involution p: KQK, p2=id, called time-reversal.
Often, the most natural choice for interacting particle systems is p=id
because we think of the state space as consisting of occupation variables or of
classical spins but our mathematical set-up will be more general.

Let (Xt, t ¥ [−T, T]) be a stationary Markov process (steady state)
on K with law Pr. The subscript refers to the unique stationary probability
measure r on K; we assume that r(a) > 0, a ¥K. The rate to go from a to b
is denoted by k(a, b), a, b ¥K and we assume that k(pb, pa)=0 iff k(a, b)
=0 (dynamic reversibility). The generator is

Lf(a)=C
b
k(a, b)[f(b)−f(a)]. (1.1)

The time-reversed process of (Xt) is the stationary Markov process
(Yt, t ¥ [−T, T]) on K with Yt — pX−t having transition rates

k̃(a, b) — k(pb, pa)
r(pb)
r(pa)

. (1.2)

We denote its law by P4rp (rp is stationary for (Yt)). Of course, it easily
happens that r=rp and yet, Pr ] P4rp. The corresponding generator for
the time-reversed process is L̃=pLgp where the * refers to the adjoint with
respect to the stationary measure r.

We say that the process (Xt)
T
−T is p-reversible if Pr=P4rp. This implies

that the stationary measure r satisfies r=rp and

r(a) k(a, b)=k(pb, pa) r(b), a, b ¥K (1.3)

which is generalized (or extended) detailed balance (microscopic reversi-
bility). For the generators, we then have L̃=L. Observe that (1.3) by itself
implies that r(a)=rp(a) r(b)/rp(b) whenever k(a, b) ] 0. Applying this
successively with b1,..., bn ¥K for which k(a, b1), k(b1, b2),..., k(bn, pa) ] 0,
we find that r(a)=rp(a). On the other hand, p-reversibility implies that
r=rp is stationary.

The entropy production is the random variable obtained from taking
the relative action on pathspace with respect to time-reversal, see ref. 6
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for a recent review. Let r−T be a probability measure on K which we use
to sample the initial data at time −T for the stochastic time-evolution
generated by L. The law of this process is denoted by Pr−T . Suppose now
that for this process the state at time T is described by the probability
measure rT. We could as well start our process (at time −T) from rTp and
then obtain the process PrT p. For a particular realization w=(w(t), t ¥
[−T, T]) of this process we let Gpw — (pw(−t), t ¥ [−T, T]) be its time-
reversal. The entropy production Rp(L, r−T, T) is a function of the
realization over the time-interval [−T, T] and is then obtained as

Rp(L, r−T, T)(w)=log
dPr−T

dPrT pGp
(w). (1.4)

Here we are only interested in its steady state expectation value, that is the
mean entropy production rate, which in fact can be written as

MEPp(L, r)=lim
T ‘.

1
2T

Er 5log
dPr
dP4rp
6 (1.5)

where Er denotes expectation with respect to Pr. The notation MEPp(L, r)
reminds us that this number depends on the transformation p, the dyna-
mics (generated via L) and the stationary measure r. The mean entropy
production thus measures the degree to which Pr can be distinguished from
P4rp. The main property of the mean entropy production is then:

Proposition 1. Consider the stationary process (Xt) above with
r=rp. Then, MEPp(L, r)=MEPp(L̃, r) \ 0 with equality if and only if
the process (Xt) is p-reversible.

This says that for finite state space Markov chains there can be no
current without heat, meaning that detailed balance is equivalent with zero
mean entropy production. The problem we address here is whether the
same remains true in the thermodynamic limit, that is for spatially
extended interacting particle systems. In this case we really should be
speaking about the mean entropy production density, i.e., per unit volume,
but we will not use this extension. Note that in this case and from now on
we will not and we cannot assume in general that r=rp even if both are
stationary.

We discuss the general physics set-up and further interpretations in
Section 3, after stating our mathematical results in Section 2. We start
however with three examples illustrating some aspects.
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1.1. Examples

Example A. We consider particles hopping on the one-dimensional
lattice with a preferred direction that is itself subject to independent flips.
The state space is {−1,+1}×{0, 1}Z and the process is determined by
choosing a constant rate c(E, g)=1 for changes from a configuration
(E, g) to (−E, g) and taking rates

c(x, E, g)=eEgx(1−gx+1)+e−Egx+1(1−gx)

for changes to (E, gx, x+1) where (gx, x+1)y=gy if x ] y ] x+1, and
(gx, x+1)y=gx when y=x+1 and =gx+1 when y=x. The resulting Markov
process has generator

Lf(E, g)=C
x
[eEgx(1−gx+1)+e−Egx+1(1−gx)][f(E, gx, x+1)−f(E, g)]

+f(−E, g)−f(E, g). (1.6)

For invariant measure r we take

r(E, dg) — 1
2 (dE,+1+dE, −1)× nu(dg)

where nu is the Bernoulli measure with specified density u ¥ (0, 1). For time-
reversal we take p(E, g)=(−E, g) so that r=rp.

It is easy to see that the process satisfies generalized detailed balance,
like (1.3), in the sense that r(E, dg)=r(−E, dg)=r(E, dgx, x+1) and both

c(E, g)=c(−E, g) and c(x, E, g)=c(x, −E, gx, x+1).

The last identity depends of course crucially on the fact that p is not the
identity and reverses left and right as preferred direction. At the same time,
as can be computed explicitly, the mean entropy production is zero. The
same remains true for p a particle-hole transformation, (pg)x=1−gx,
leaving the field E unchanged. Then, r ] rp for u ] 1/2 but still general-
ized detailed balance holds. Finally if, instead, we were to take p=identity
as time-reversal, then we break the detailed balance condition and we
obtain a strictly positive mean entropy production.

Example B. We take the simplest example of a spinflip dynamics
for which the one-dimensional Ising model is stationary but not reversible
(for p=id). Exactly the same can be done in two dimensions, see ref. 7.
Spinflips are transformations Ux: s Q Ux(s)=sx, x ¥ Z, s ¥ {+1, −1}Z for
sx equal to s except at the site x.
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Consider the one-dimensional spinflip dynamics with the following
asymmetric rates:

c(x, s)=exp(−2bsxsx+1). (1.7)

The invariant measure r is the one-dimensional Ising model at inverse
temperature b. The process starting from r is not time-reversal invariant
and the entropy production is equal to MEP(L, r)=4b tanh b (that is with
time-reversal p=identity). On the other hand, this time-reversed process is
easy to find; it is a spinflip process with generator

Lgf(s)=C
x
e−2bsx sx−1[f(sx)−f(s)].

Let us now take for time-reversal p the reflection: (ps)x=s−x which leaves
r invariant. Since

(ps)x=p(s−x)

Lg=pLp and we have in fact generalized detailed balance (1.3):

c(x, s)
c(−x, (ps)−x)

=
dr p Ux

dr
(s)=e−2bsx(sx−1+sx+1).

The denominator in the left hand side is the rate in the original process by
which pUxs=p(sx)=(ps)−x is changed to ps. As a result, MEPp(L, r)
=MEPp(Lg, r)=0.

Example C. Instead of driving the system in the bulk and breaking
detailed balance via some external fields that act on each component of the
system, we may also consider boundary driven processes. For this we need
to start with finite volume. The simplest interesting case is that of a sym-
metric exclusion process on a lattice interval that is driven by independent
birth and death processes at its boundaries corresponding to different
chemical potentials. Take Ln={−n, −n+1,..., n−1, n} and g ¥ {0, 1}Ln a
particle configuration evolving with generator

Gnf(g)= C
n−1

x=−n
[f(gx, x+1)−f(g)]

+l[eh1 g−n(f(g−n)−f(g))+eh2 gn(f(gn)−f(g))]. (1.8)

The first term corresponds to symmetric hopping with exclusion; the two
last terms are giving birth and death to particles at the ends of the interval
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with parameters h1, h2. One can think here of particle reservoirs, to the
left of the system with density 1/(1+eh1) and to the right with density
1/(1+eh2). For l=0 the system is uncoupled from the reservoirs and it has
all uniform product measures as reversible measures with vanishing mean
entropy production. For l ] 0, h1 ] h2 this detailed balance is lost and we
have positive mean entropy production. Yet, it remains of order unity,
uniformly in the size n meaning that the mean entropy production density
vanishes in the thermodynamic limit. This is an instance of a more general
fact for interacting particle systems that will also be treated in the next
section: you cannot by driving the system at its boundaries break the time-
reversal invariance in the limiting infinite volume process, see Proposition 2
below.

We do not know whether there exists a time-reversal p for which (1.8)
would give rise to generalized detailed balance.

In this paper we show more generally how breaking of detailed
balance is strictly equivalent with non-zero mean entropy production.
There is no way to get a current and at the same time to have no dissipa-
tion (zero mean entropy production).

In the next section we describe our class of models and we state our
main result. In Section 3, we discuss this result and we give some more
background information concerning entropy production, reversibility and
time-reversal. Section 4 is devoted to the proofs.

2. MODELS AND MAIN RESULT

2.1. Dynamics

This subsection describes the assumptions and introduces the neces-
sary notation.

The configuration space is W — SZ
d
where S is a finite set and Zd is the

regular d−dimensional lattice. Let p be an involution on W. A special but
important case is when p=identity. We assume here that p commutes with
lattice translations yx, x ¥ Zd.

Let V0 … Zd be a finite cube containing the origin and write P0 for any
specific non-empty set of transformations U0 on W satisfying, for every
U0 ¥P0, and for every s ¥ W:

(i) (U0s)(y)=s(y), for y ¥ Vc0,
(ii) U−10 ¥P0,
(iii) pP0p=P0,
(iv) If U0 ] U −0 and U0s ] s, U −0s ] s then U0s ] U −0s (for conve-

nience only.)

574 Maes et al.



We consider the translations Vx — {y+x: y ¥ V0} and Ux — yxU0y−x to
generate a dynamics via local translation invariant rates c(Ux, s) for the
transition s Q Uxs. We assume:

(v) Positivity: c(U0, s)=0 when U0s=s and if not, c(U0, s) > 0,

(vi) Finite range: there is a finite L̄ … Zd such that for all s, g ¥ W,
and U0 ¥P0: c(U0, s)=c(U0, sL̄ gL̄c),

(vii) Translation invariance: for all x ¥ Zd, Ux ¥Px, s ¥ W: c(Ux, s)=
c(U0, y−xs).

The generator L corresponding to the given rates is now defined on local
functions f as

Lf(s) — C
x ¥ Z

d
C
Ux ¥Px

c(Ux, s)[f(Uxs)−f(s)]. (2.9)

That is, s is changed to g at rate c(Ux, s) if g=Uxs. We will always write r

for a translation invariant stationary measure for this dynamics. It can be
different from rp but we assume that also rp is stationary. Finally, r and
rp give positive weight to all cylinders and writing rU=Ur, we always
assume that drU0/dr(s) \ c > 0, which, even in the present rather general
set-up, can be expected quite generally.

For V0={0} and S={+1, −1}, the choice Uxs=sx corresponds to a
spinflip process. Taking V0={0, e1, e2,..., ed} with ea the lattice unit
vectors, we can make a spin exchange process or hopping dynamics. We
refer to ref. 8 for further details on constructing the infinite volume
process.

2.2. Mean Entropy Production

Put Ln=[−n, n]d 5 Zd for large n and define LÄn as the maximal
subset of Ln, such that for all x ¥ LÄn and Ux ¥Px, c(Ux, s) depends only on
coordinates inside Ln, and Vx … L. Consider now the Markov chain on SLn
with generator

Lnf(s) — C
x ¥ LÄn

C
Ux ¥Px

c(Ux, s)[f(Uxs)−f(s)] (2.10)

and started from a probability measure r−T on SLn at time −T. The
measure at time T is denoted by rT. Via a Girsanov formula this dynamics
gives rise to a Hamiltonian (or action functional) on space-time trajectories
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w (as in refs. 2 and 6), with corresponding relative energy with respect to
time-reversal given by the entropy production (1.4) and here equal to

Rp(Ln, r−T, T)(w)=ln r−T(w(−T))− ln rT(w(T))+DSe(w) (2.11)

with

DSe(w)= C
x ¥ LÄn

C
Ux ¥Px

F
T

−T
log

c(Ux, w(s−))
c(pU−1x p, pUxw(s−))

dNUx
s (w)

+F
T

−T
[c(Ux, pw(s))−c(Ux, w(s))] ds (2.12)

where NUx
t (w) —;−T [ s [ t I(w(s)=Ux(w(s−)) ] w(s−)) is the number of

times the transformation Ux appeared in the realization w up to time
t ¥ [−T, T]. The expression (2.12) must be interpreted as the variable
entropy produced in the reservoirs (environment) when the microscopic
system configuration moves from w(−T) to w(T): To get the total variable
entropy production (2.11) one should add to (2.12) the corresponding
change in the system’s entropy, that are the first two terms in (2.11).
However, when taking steady state averages, this part vanishes (the entropy
of the stationary system does not change on average). We can therefore
define the mean entropy production for the interacting particle system as

MEPp(L, r) — lim
n

lim
T ‘.

1
2 |Ln | T

En, Tr (DSe) (2.13)

En, Tr denotes the expectation with respect to the path space measure, in the
stationary distribution r, restricted to trajectories within SLn. In other
words, the mean entropy production is the expectation of the time-reversal
breaking part in the space-time action functional governing the dynamics.
We refer to ref. 2 for a mathematical discussion on the existence of the
limit (2.13) and for a proof of its non-negativity. We refer to refs. 3, 4, and
6 and Section 3 for further background.

2.3. Results

The main question is to see whether for a dynamics where the time-
reversal symmetry is explictly broken (in the sense that there is no detailed
balance), there still can be zero mean entropy production (dissipationless
steady state). Our main result says that this is impossible.
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Main Theorem. Under the conditions above, MEPp(L, r)=
MEPp(L, rp)=0 implies that the dynamics satisfies (generalized) detailed
balance in the sense that for all U0

c(pU−10 p, pU0s)
drU0

dr
(s)=c(U0, s) r-a.s. (2.14)

Note that (2.14) is really the analogue of (1.3). Observe also here that (2.14)
implies that the densities drU0/dr are invariant under replacing r by rp.
This follows from rewriting (2.14) from right to left with s Q pU0s and
U0 Q pU−10 p:

c(pU−10 p, pU0s)=c(ppU0pp, ppU−10 ppU0s)
drpU

−1
0 p

dr
(pU0s)

=c(U0, s)
drp

drpU0
(s)

and comparing it with the original (2.14).
We call P0 complete if every local transformation h: W Q W can be

written as a composition of Ux: i.e., if h=Ux1 · · ·Uxn for some x1,..., xn ¥ Zd.

Corollary 1. If MEPp(L, r)=MEPp(L, rp)=0 and if P0 is
complete and p is continuous, then r is a reversible Gibbs measure for the
dynamics defined above.

In ref. 2 the converse to these results was already shown: Suppose that
the rates satisfy

c(Ux, s)=c(pU−1x p, pUxs) exp(−H(Uxs)+H(s)). (2.15)

This is again the analogue of (1.3). The energy difference in (2.15) should
be interpreted in terms of an absolutely convergent sum of potentials:

H(sLgLc)−H(tLgLc)= C
A 5 L ]”

(V(A, sLgLc)−V(A, tLgLc)), (2.16)

where (V(A, · ): SAQ (−.,+.), A finite subsets of Zd), is a translation
invariant (uniformly) absolutely summable potential:

C
A ¦ 0

max
s ¥ SA

|V(A, s)| < +.. (2.17)
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Then,

MEPp(L, r)=MEPp(L, rp)=0

When we combine the above we obtain a final

Corollary 2. Under the conditions of Corollary 1, if there is one
translation invariant stationary measure r for which r=rp andMEPp(L, r)
=0, then also MEPp(L, n)=0 for all translation invariant stationary mea-
sures n and they are all Gibbsian for the same potential.

A caveat in the above main result is to understand better the relation
between MEPp(L, r) and MEPp(L, rp). To this we can only add that
MEPp(pLp, r)= MEPp(L, rp), as can be verified from a direct computa-
tion starting with (4.24). The simplest illustration of all this was already
obtained in ref. 5 for a spinflip process. Example B, (1.7), deals with a
spinflip process but there the time-reversal p does not commute with
translations. As will be seen from the proof, that is indeed not essential as
long as the dynamics and the stationary measure are translation invariant.
Of course, one should then be extra careful with condition (iii) but also this
can be modified accordingly. It will also be clear that more general lattice
structures and configuration spaces can be employed (e.g., already in
Example A).

Finally, for completeness we come back to the situation of Example C
in Section 1.1. For this we must leave the translation invariant infinite
volume context and ask whether boundary driven interacting particle
systems can give rise to non-vanishing mean entropy production density in
the thermodynamic limit. The question can be formalized as follows. We
consider a process on SLn with generator Gn generalizing (1.8)

Gnf(s) — Lnf(s)+ C
A … Ln 0L

Ä

n
diam A [ r

C
g ¥ SA

k (n)A (s, g)[f(sA, g)−f(s)]

where sA, g — sAcgA equals s outside the set A which has a diameter
(maximal lattice distance within) less than a given constant r.

Here the generator Ln is given by (2.10) but with rates verifying con-
dition (2.15) for a finite range potential, and rates k (n)A (s, g) as in (1.8)
inducing configurational changes at the boundary of Ln. We further
assume that the k (n)A (s, g) are uniformly bounded from below and from
above. In other words, we have a bulk dynamics generated by Ln with rates
satisfying (generalized) detailed balance, and at the boundary the configu-
ration can change quite arbitrarily (but in a local and bounded way). We
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suppose that rn is the unique stationary measure of this dynamics and for
simplicity we only treat the case p=id. We are interested in the mean
entropy production MEP(Gn, rn) defined in (1.5) (with p=id).

Proposition 2. There is a constantK so thatMEPp(Gn, rn) [Knd−1.

The proofs of the above results are postponed to Section 4.

3. DISCUSSION

We briefly discuss some concepts that are important for our result.

3.1. Time-Reversal

By this we usually mean a transformation on phase space W which, for
a many-particle system, is defined particle-wise or, for spatially extended
systems, is sufficiently local. Physically speaking, its precise nature follows
from kinematical considerations on the dynamical variables. In classical
mechanics, it reverses the momenta of all the particles but in the presence
of say an electromagnetic potential, considered part of the system, one can
add an extra transformation reversing also the magnetic field and thus
making the Lorentz force time-reversal invariant. In our case, we have a
configuration space W=SZ

d
with Zd the d-dimensional lattice and S a finite

set. Time-reversal is an involution p on W, p2=id. Time-reversal extends to
a transformation Gp on path-space, as introduced for (1.4), by reversing the
trajectories. That is, if we have a trajectory (wt, t ¥ [−T, T]) then the time-
reversed trajectory hp(w) is given by (hp(w))t — pw−t.

3.2. Reversibility

Dynamic reversibility is a property of the dynamics itself under time-
reversal. It says that if one trajectory w of the system is possible, so is its
time-reversed hp(w). For a deterministic system where wt=f(t) w0 with
f(t) an invertible flow on phase space, it says that f(t)−1=pf(t) p, that is a
symmetry that anticommutes with the time evolution. For a stochastic
dynamics this is implied by assuming that if a transition s Q Us is possible
(positive transition rate), then also the same is true for its time-reversal
pUs Q ps.

Microscopic reversibility is a consequence of dynamic reversibility in
case of an equilibrium dynamics. For our purposes here we do not make a
distinction with the condition of detailed balance. When the dynamics is
driven away from equilibrium, the resulting stochastic model will not satisfy
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detailed balance. Usually this produces a current in the system (but that
need not be true in general, see an example in ref. 4). On the other hand,
a net current signifies the breaking of the detailed balance condition. In
general we like to distinguish between two classes of finite volume dyna-
mics where microscopic reversibility is explicitly broken. These are bound-
ary driven versus bulk driven dynamics depending on the extensivity of the
perturbation from an equilibrium dynamics. In the bulk driven case, one
usually verifies so called local detailed balance, i.e., (2.15) is changed into

c(Ux, s)=c(pU−1x p, pUxs) exp(−H(Uxs)+H(s)) eEF(Ux s, s)

where E is some amplitude of an external field and F is antisymmetric,
F(pg, ps)=−F(s, g), see e.g., ref. 1. Note also that then, necessarily, the
relative energiesH(Uxs)−H(s) are invariant under exchangingHwithHp.

In boundary driven systems, the process becomes non-translation
invariant and the rates remain of the form (2.15) in the bulk (that is for x
well inside the considered finite volume) while more or less arbitrary on the
boundary. This was the case for Example C in Section 1.1 and was for-
malized for Proposition 2. Note that there is in fact an example of a
boundary driven system where uniformly in the size of the system a bulk
current can be maintained. This is the nonequilibrium harmonic crystal
treated in refs. 9 and 10 where the heat flux is proportional to the bound-
ary temperature difference rather than to the temperature gradient (infinite
heat conductivity in the thermodynamic limit). Such ‘‘superconductors’’ do
not exist in the context of interacting particle systems as discussed in the
present paper.

3.3. Entropy Production

In phenomenological thermodynamics, entropy production appears in
open driven systems as the product of thermodynamic fluxes and forces.
The forces are gradients of intensive quantities (like chemical potential)
generating the currents. The entropy production is identified from a balance
equation for the time-derivative of an entropy density which is defined in
systems close to equilibrium. The definition of entropy production as we use
it here in statistical mechanics comes from refs. 2–5, 11–13 and we refer to the
review. (6) The mean entropy production appears there and in (1.4)–(1.5) as a
relative entropy (density) for the process with respect to its time-reversal.
That immediately invites the following thought (we are grateful to Senya
Shlosman for pointing to this): In equilibrium statistical mechanics, if two
translation invariant Gibbs measures have zero relative entropy density, then
they must both be Gibbsian for the same interaction potential (but not
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necessarily equal, e.g., because of spontaneous symmetry breaking). Apply
this to the space-time measures obtained for the process Pr and the time-
reversed process PrG as introduced for (1.4). Here we take p=identity
to avoid extra complications. In some sense, both processes are Gibbs mea-
sures. Thus, if the mean entropy production is zero, then the process itself
and its time-reversal have the same (space-time) action functional. Because
they also have the same marginals r, they must in fact coincide (hence no
spontaneous time-reversal breaking). Hence, zero mean entropy production
implies microscopic reversibility. While convincing on a superficial level,
unfortunately the details of this argument are technically cumbersome and a
direct sufficiently general proof along this line has not been found.

The only more recent paper that we know of concerning time-reversal
symmetry and the relation with entropy production is ref. 14. The set-up
there is however quite different from ours. Time-reversal symmetry is there
associated with the anticommutation of an involution with the time evolu-
tion, what we have called dynamic reversibility in the above. In our discus-
sions here, we deal with spatially extended stochastic dynamics and the
breaking of microscopic reversibility.

4. PROOFS

Lemma 1. Under the conditions of Section 2.1, for a translation
invariant stationary measure n,

C
U0 ¥P0

F dn(s) c(U0, s) log
dnU0

dn
(s)=0. (4.18)

Proof. Let FL be the s-field generated by sx, x ¥ L. Denote by nL,
respectively nU0L the FL-restrictions of n and nU0. Then we have

dnU0L
dnL

=En 5
dnU0

dn
:FL6 .

Since dnU0/dn ¥ L1(dn) for all U0, we find using the martingale convergence
theorem that

lim
L ‘ Z

d

dnU0L
dnL

=
dnU0

dn
, (4.19)

in L1(dn). Let ñ be the product measure on W having as marginals the
uniform measure on S. From stationarity applied to the local function
fL=dnL/dñL we find
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0= C
x ¥ LŒ

C
Ux ¥Px

F dn(s) c(Ux, s) 5log dnUxL
dñL

− log
dnL

dñL
6

= C
x ¥ LŒ

C
Ux ¥Px

F dn(s) c(Ux, s) log
dnUxL
dnL

= C
x ¥ LŒ

C
Ux ¥Px

F dn(s) c(Ux, s) log
dnUx

dn

+ C
x ¥ LŒ

C
Ux ¥Px

F dn(s) c(Ux, s) 5log dnUxL
dnL

− log
dnUx

dn
6

=|LŒ| C
U0 ¥P0

F dn(s) c(U0, s) log
dnU0

dn
(s)

+ C
x ¥ LŒ

C
Ux ¥Px

F dn(s) c(Ux, s) FUxL (s).

The last equality uses translation invariance. We have used the notation
LŒ — {x ¥ Zd | Vx 5 L ]”} and the expression

FUxL (s) — 1 log dnUxL
dnL

− log
dnUx

dn
2 .

We thus have

: C
U0 ¥P0

F dn(s) c(U0, s) log
dnU0

dn
(s) :

[
1
|LŒ|

C
x ¥ LŒ

C
Ux ¥Px

:F dn(s) c(Ux, s) FUxL (s) :

[M
1
|LŒ|

C
x ¥ LŒ

C
U0 ¥P0

F dn |FU0L−x |, (4.20)

by the translation invariance of n, and M bounds the rates. Now we use the
general fact that if fn converges to f in L1(dn) and both fn, f are bounded
from below by some constant c > 0, then log fn converges to log f in
L1(dn). This fact implies that for any given e > 0, we can choose D … Zd

such that for all DŒ ‡ D:

max
U0 ¥P0

F dn |FU0DŒ | [
e

2MN
, with |P0 | —N.
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Choose now L … Zd so large that

|{x ¥ LŒ : D+x 5 Lc ]”}|
|LŒ|

[
e

2MN sup
W, U0

||FU0W ||L1(dn)
.

We then conclude that

: C
U0 ¥P0

F dn(s) c(U0, s) log
dnU0

dn
(s) :

[
1
|LŒ|

C
x ¥ LŒ, D+x … L

E

2
+MN

|{x ¥ LŒ : D+x 5 Lc ]”}|
|LŒ|

sup
W, U0

||FU0W ||L1(dn)

[ e. L (4.21)

Proof of Main Theorem. Define

c̄(U0, s) — c̄(p, r; U0, s) — c(pU−10 p, pU0s)
drU0

dr
(s)

and substitute it in

C
U0 ¥P0

F dr(s)[c(U0, s)− c̄(U0, s)] log
c(U0, s)
c̄(U0, s)

. (4.22)

We get four terms, (4.22)=

C
U0 ¥P0

5F dr(s) log
c(U0, s)

c(pU−10 p, pU0s)
+F dr(s) c(U0, s) log

dr

drU0

+F drU0(s) c(pU−10 p, pU0s) log
c(pU−10 p, pU0s)

c(U0, s)

+F drU0(s) c(pU−10 p, pU0s) log
drU0

dr
6 . (4.23)

The second term is zero by Lemma 1. The fourth term is also zero because,
using condition (iii), we can change pU−10 p Q U0 in the sum over P0 getting
it equal to

C
U0 ¥P0

F drp(s) c(U0, s) log
drp

d(rp)U0
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which is zero, again by Lemma 1 applied to the stationary measure rp.
Again using (iii), we can also rewrite the third term as

C
U0 ¥P0

F drp(s) log
c(U0, s)

c(pU−10 p, pU0s)
.

Therefore, what remains of (4.23) is the sum of the first and the third term
so that (4.22) equals

C
U0 ¥P0

5F dr(s) log
c(U0, s)

c(pU−10 p, pU0s)
+F drp(s) log

c(U0, s)
c(pU−10 p, pU0s)

6 .

We now recall that the mean entropy production (2.13) equals

MEPp(L, r)= C
U0 ¥P0

1F dr(s) c(U0, s) log
c(U0, s)

c(pU−10 p, pU0s)

+F dr(s) [c(U0, ps)−c(U0, s)]2 . (4.24)

This was derived from (2.12) in ref. 2. We conclude therefore that (4.22)
equals MEPp(L, r)+MEPp(L, rp) which is zero by hypothesis. This
implies the statement of the Theorem. L

Proof of Corollary 1. Since the Radon–Nikodym derivative of rU0

with respect to r is a local function for all U0 and since by assumption, we
can generate with the U0 all local excitations sŒ from s, it means that r has
a continuous version for its local conditional distributions. L

Proof of Corollary 2. From the main result and Corollary 1 it
follows that r is a translation invariant stationary Gibbs measure and
(2.15) must be satisfied. All other translation invariant stationary measures
must be Gibbsian and for the same potential, see e.g., ref. 7. From the
results in ref. 2 as cited above the statement of Corollary 2, it follows that
every other stationary translation invariant measure must have zero mean
entropy production. L

Proof of Proposition 2. From the definition (1.5) we must first
compute the relative action under time reversal, that is

Rn — log
dPrn
dP4rn
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This can be done via a Girsanov formula and we obtain the analogue of
(2.12):

Rn(w)= C
x ¥ LÄn

C
Ux ¥Px

F
T

−T
log

c(Ux, w(s−))
c(U−1x , Uxw(s−))

dNUx
s (w)

+ C
A … Ln 0L

Ä

n
diam(A) [ r

C
s ¥ SA

F
T

−T
log

k (n)A (w(s−), w(s−)A, s)
k (n)A (w(s−)A, s, w(s−))

dNA, s, n
s (w).

The first integral is really a sum over all the times when the trajectory
makes a jump from the action of one of the Ux; the second integral is a sum
over all times when a configuration s is replacing w(s−) in a set A on the
boundary. In order to further clarify this formula, let us first look at
trajectories where no boundary transitions take place (or, what amounts to
the same, take k — 0 for the moment). Then, we only keep the first term,
that is just (2.12), in case p=id :

C
x ¥ LÄn

C
Ux ¥Px

F
T

−T
log

c(Ux, w(s−))
c(U−1x , Uxw(s−))

dNUx
s .

But if we insert the detailed balance condition (2.15), the above expression
telescopes to

H(w(−T))−H(w(T))

and the mean entropy production is zero by stationarity.
Turning to the general case we let {si}

q
i=1 be the set of times at which

boundary transitions occur in the sets Ai, i=1,..., q, for the trajectory w.
These are random but we fix them as −T [ s1 < s2 < · · · < sq [ T. The
important thing to realize now is that while the perfect telescoping of above
is broken at each of these times, it can be restored by adding and subtract-
ing. More precisely, we have

Rn(w)=H(w(−T))−H(w(s−1 ))+H(w(s1))−H(w(s−2 ))+· · ·

+H(w(sq))−H(w(T))+log
k (n)A1 (w(s−1 ), w(s1))
k (n)A1 (w(s1), w(s−1 ))

+log
k (n)A2 (w(s−2 ), w(s2))
k (n)A2 (w(s2), w(s−2 ))

+· · ·+log
k (n)Aq (w(s−q ), w(s−q ))
k (n)Aq (w(sq, w(s−q ))

.
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But by the absolute convergence of the interaction potential we have

|H(w(s−i )−H(w(si))| [ rC

for some constant C, since w(s−i ) and w(si) only differ in the set Ai. There-
fore the telescoping of the terms involving energy differences can be
restored upon inserting q terms of order unity.

As for the other terms, we have assumed uniform boundedness so that
we get

|Rn(w)| [ q 1 rC+log
M
E
2

where M and E are constant upper and lower bounds for the transition
rates k (n). As the expectation of q=q(w) under Ern is proportional to
T |“Ln |, the proposition is proved. L
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